

Acumen Teach To the point

Energy Master-box

Energy—Logic—Mathematical knowledge application—Knowledge of units

Easy Questions

1.	What is the unit of energy?	
2.	State the principle of conservation of energy.	(1 marks)
3.	Calculate the kinetic energy of a 2 kg object moving at 3 m/s.	(1 marks)
		(1 marks)

4.	What type of energy is stored in a stretched spring?	
5.	Convert 500 J into kilojoules (kJ).	(1 marks)
6.	What is the gravitational potential energy of a 5 kg object raised to a height of 4 m? (Use $g=9.8\mathrm{m/s^2}$)	(1 marks) =
7.	Define power.	(1 marks)
o		(1 marks)
8.	What is the efficiency of a device that wastes 20 J of energy for every 100 J of input energy	, f
		(1 marks)

9.	Name one renewable energy source.	
10.	What is the work done when a force of 10 N moves an object 5 m?	(1 marks)
11.	State the equation linking power, energy, and time.	(1 marks)
12.	What type of energy transfer occurs in a battery-powered torch?	(1 marks)
		(1 marks)

Moderate Questions

13.	A car of mass 800 kg is travelling at 20 m/s. Calculate its kinetic energy.	
14.	A crane lifts a 50 kg weight to a height of 10 m. Calculate the gravitational potential energy gained. (Use $g=9.8\mathrm{m/s^2}$)	(2 marks)
15.	A motor transfers 600 J of energy in 10 seconds. Calculate its power output.	(2 marks)
16.	A solar panel receives 2000 J of energy from the Sun and converts 400 J into electrical ene Calculate its efficiency.	(2 marks) rgy.
		(2 marks)

17.	A force of 50 N is applied to move a box 6 m. Calculate the work done.	
18.	A kettle has a power rating of 2000 W. How much energy does it transfer in 30 seconds?	(2 marks)
19.	A cyclist does 1500 J of work to overcome friction. If the cyclist's efficiency is 75%, calculate the total energy input.	(2 marks)
20.	A ball falls from a height of 5 m. Calculate its speed just before hitting the ground. (Use $g=9.8{ m m/s}^2$, ignore air resistance.)	(2 marks)
21.	A machine is 60% efficient. If it wastes 80 J of energy, calculate the total energy input.	(2 marks)
		(2 marks)

Difficult Questions

(3 marks)

26. A 0.5 kg ball is thrown vertically upwards with a speed of 10 m/s. Calculate the maximum height it reaches. (Use $g=9.8\,\mathrm{m/s}^2$, ignore air resistance.)

(3 marks)

27. A pump lifts 100 kg of water to a height of 15 m in 20 seconds. Calculate its power output. (Use $g=9.8\,\mathrm{m/s^2}$)

(3 marks)

28. A coal-fired power station has an overall efficiency of 40%. If it produces 2000 MJ of electrical energy, calculate the total energy input from burning coal.

(3 marks)

29. A car engine wastes 70% of the energy from fuel as heat. If the useful energy output is 90 MJ, calculate the total energy input.

(3 marks)

30. A hydroelectric dam converts gravitational potential energy into electrical energy with an efficiency of 80%. If 10,000 kg of water falls 50 m, calculate the electrical energy produced. (Use $g=9.8\,\mathrm{m/s^2}$)

(3 marks)

31. A 60 W light bulb is left on for 5 hours. Calculate the total energy transferred in kilowatt-hours (kWh).

(3 marks)

(3 marks)